Author Affiliations
Abstract
1 State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
We use the selective area growth (SAG) technique to monolithically integrate InP-based 4-channel arrayed waveguide gratings (AWGs) with uni-traveling carrier photodiode arrays at the O-band. Two kinds of channel spacing demultiplexers of 20 nm and 800 GHz are adopted for potential 100 Gbps coarse wavelength division multiplexing and local area network wavelength division multiplexing systems, with an evanescent coupling plan to facilitate the SAG technique into device fabrication. The monolithic chips in both channel spacings exhibit uniform bandwidths over 25 GHz and a photodiode responsivity of 0.81 A/W for each channel, in agreement with the simulated quantum efficiency of 80%. Cross talk levels are below 20 dB for both channel spacing chips.
230.3120 Integrated optics devices 230.5170 Photodiodes 
Chinese Optics Letters
2017, 15(8): 082301

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!